Inegalitate conditionata cu suma

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inegalitate conditionata cu suma

Post by Marius Mainea »

Daca a, b, c sunt numere reale nenegative cu \( \sqrt{a}+\sqrt{b}+\sqrt{c}=1 \), atunci :

\( a(\sqrt{b}+\sqrt{c})+b(\sqrt{c}+\sqrt{a})+c(\sqrt{a}+\sqrt{b})\le \frac{1}{4} \)

G.M. seria B
Arbos
Posts: 2
Joined: Sat Mar 14, 2009 8:50 pm

Inegalitate conditionata

Post by Arbos »

Obs. Luand a=0 obtinem urmatorul tip de inegalitate conditionata:
"Daca \( x+y=1 \) atunci \( $x^2y+y^2x \leq\frac{1}{4}$ \)", adevarata din \( xy\leq\frac{(x+y)^2}{4} \).
Fie acum \( x=\sqrt{a}+sqrt{b} \) si \( y=\sqrt{c} \) cu alegerea lui c cel mai mare dintre a si b. Inegalitatea din Obs. devine: \( (\sqrt{a}+\sqrt{b})^2\sqrt{c}+c(\sqrt{a}+\sqrt{b})\leq\frac{1}{4} \). Se arata usor ca \( a(\sqrt{b}+\sqrt{c})+b(\sqrt{c}+\sqrt{a})+c(\sqrt{a}+\sqrt{b})\leq\(\sqrt{a}+\sqrt{b})^2\sqrt{c}+c(\sqrt{a}+\sqrt{b}) \)
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

\( \sum_{cyc}a(\sqrt{b}+\sqrt{c})=\sum_{cyc}(a-a\sqrt{a})\le \sum_{cyc}\frac{\sqrt{a}}{4}=\frac{1}{4} \)
. A snake that slithers on the ground can only dream of flying through the air.
Arbos
Posts: 2
Joined: Sat Mar 14, 2009 8:50 pm

Inegalitate conditionata cu suma

Post by Arbos »

Daca \( sqrt{a}+sqrt{b}+sqrt{c}=1 \), atunci
\( a(\sqrt{b}+\sqrt{c})+b(\sqrt{c}+\sqrt{a})+c(\sqrt{a}+\sqrt{b})+3sqrt{abc}\leq\frac{1}{3} \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notand \( \sqrt{a}=x \)si analoagele inegalitatea este echivalenta cu

\( \sum x^2(y+z)+3xyz\le \frac{(x+y+z)^3}{3} \)
Post Reply

Return to “Inegalitati”