Daca a, b, c sunt numere reale nenegative cu \( \sqrt{a}+\sqrt{b}+\sqrt{c}=1 \), atunci :
\( a(\sqrt{b}+\sqrt{c})+b(\sqrt{c}+\sqrt{a})+c(\sqrt{a}+\sqrt{b})\le \frac{1}{4} \)
G.M. seria B
Inegalitate conditionata cu suma
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Inegalitate conditionata
Obs. Luand a=0 obtinem urmatorul tip de inegalitate conditionata:
"Daca \( x+y=1 \) atunci \( $x^2y+y^2x \leq\frac{1}{4}$ \)", adevarata din \( xy\leq\frac{(x+y)^2}{4} \).
Fie acum \( x=\sqrt{a}+sqrt{b} \) si \( y=\sqrt{c} \) cu alegerea lui c cel mai mare dintre a si b. Inegalitatea din Obs. devine: \( (\sqrt{a}+\sqrt{b})^2\sqrt{c}+c(\sqrt{a}+\sqrt{b})\leq\frac{1}{4} \). Se arata usor ca \( a(\sqrt{b}+\sqrt{c})+b(\sqrt{c}+\sqrt{a})+c(\sqrt{a}+\sqrt{b})\leq\(\sqrt{a}+\sqrt{b})^2\sqrt{c}+c(\sqrt{a}+\sqrt{b}) \)
"Daca \( x+y=1 \) atunci \( $x^2y+y^2x \leq\frac{1}{4}$ \)", adevarata din \( xy\leq\frac{(x+y)^2}{4} \).
Fie acum \( x=\sqrt{a}+sqrt{b} \) si \( y=\sqrt{c} \) cu alegerea lui c cel mai mare dintre a si b. Inegalitatea din Obs. devine: \( (\sqrt{a}+\sqrt{b})^2\sqrt{c}+c(\sqrt{a}+\sqrt{b})\leq\frac{1}{4} \). Se arata usor ca \( a(\sqrt{b}+\sqrt{c})+b(\sqrt{c}+\sqrt{a})+c(\sqrt{a}+\sqrt{b})\leq\(\sqrt{a}+\sqrt{b})^2\sqrt{c}+c(\sqrt{a}+\sqrt{b}) \)
Inegalitate conditionata cu suma
Daca \( sqrt{a}+sqrt{b}+sqrt{c}=1 \), atunci
\( a(\sqrt{b}+\sqrt{c})+b(\sqrt{c}+\sqrt{a})+c(\sqrt{a}+\sqrt{b})+3sqrt{abc}\leq\frac{1}{3} \)
\( a(\sqrt{b}+\sqrt{c})+b(\sqrt{c}+\sqrt{a})+c(\sqrt{a}+\sqrt{b})+3sqrt{abc}\leq\frac{1}{3} \)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)