Spatii L^p

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Spatii L^p

Post by Beniamin Bogosel »

Fie \( p_1<p_2 \in [1,\infty) \) si \( f \in L^{p_1}(\mu) \cap L^{p_2}(\mu) \). Demonstrati ca \( f \in L^{p}(\mu),\ \forall p \in [p_1,p_2] \).

Examen Analiza Reala 05.02.2009
UVT Timisoara, Fac. Mate, Anul II


Obs: Daca \( (X,\mathcal{A},\mu) \) ar fi un spatiu cu masura finita, atunci ar rezulta ca \( L^{p_2} \subset L^p \) pentru orice \( p \in [1,p_2) \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Teoria masurii”