Inegalitate hard

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Inegalitate hard

Post by alex2008 »

Fie \( x,y,z \) numere pozitive cu suma \( 1 \) . Demonstrati ca :

\( xy+yz+zx\ge 4(y^2z^2+z^2x^2+x^2y^2)+5xyz \)

Cand are loc egalitatea ?
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Scriem inegalitatea sub forma

\( (xy+yz+zx)(x+y+z)^2\ge 4(x^2y^2+y^2z^2+z^2x^2)+5xyz(x+y+z) \)

care dupa desfacerea parantezelor si reducerea termenilor asemenea devine

\( \sum_{sym}{x^3y}\ge \sum_{sym}{x^2y^2} \) care este inegalitatea lui Muirhead pentru tripletele \( (3,1,0)\succ (2,2,0) \)
Post Reply

Return to “Clasa a IX-a”