Fie \( a,b,c \) numere reale pozitive . Sa se arate ca :
\( \sum_{cyc}\frac{4a}{2a^2+b^2+c^2}\le \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)
Manuela Prajea , Etapa locala Mehedinti 2006
Mehedinti 2006
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Mehedinti 2006
. A snake that slithers on the ground can only dream of flying through the air.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: Mehedinti 2006
\( LHS\le\sum{\frac{4a}{4\sqrt[4]{a^2\cdot a^2\cdot b^2\cdot c^2}}}=\sum{\frac{4a}{4a\sqrt{bc}}=\sum{\frac{1}{\sqrt{b}\sqrt{c}}\le\sum{\frac{1}{a}} \)alex2008 wrote:Fie \( a,b,c \) numere reale pozitive . Sa se arate ca :
\( \sum_{cyc}\frac{4a}{2a^2+b^2+c^2}\le \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \)