Inegalitate

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate

Post by Claudiu Mindrila »

Fie \( x,y\in\mathbb{R}^{*} \) si \( a=x+\frac{1}{x},b=y+\frac{1}{y},c=xy+\frac{1}{xy} \) . Demonstrati ca \( abc+4 \ge ab+bc+ca \) si precizati valorile lui \( x \) si \( y \) pentru care se realizeaza egalitatea.
Concursul "Cezar Ivanescu", 2009
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: Inegalitate

Post by Marius Mainea »

Claudiu Mindrila wrote:Fie \( x,y\in\mathbb{R}^{*} \) si \( a=x+\frac{1}{x},b=y+\frac{1}{y},c=xy+\frac{1}{xy} \) . Demonstrati ca \( abc+4 \ge ab+bc+ca \) si precizati valorile lui \( x \) si \( y \) pentru care se realizeaza egalitatea.
Concursul "Cezar Ivanescu", 2009
Vezi aici
Post Reply

Return to “Clasa a VIII-a”