o versiune a teoremei lui Rouche pentru functii continue

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

o versiune a teoremei lui Rouche pentru functii continue

Post by Cezar Lupu »

Fie \( D \) discul inchis in \( \mathbb{C} \) si consideram functia continua \( f: D\to\mathbb{C} \) si \( g \) o functie analitica intr-o vecinatate a lui \( D \). Daca \( |f(\zeta)\leq |g(\zeta)| \) pentru orice
\( \zeta\in\partial D \) si \( g \) are o radacina in \( D \), atunci si
functia \( f+g \) are o radacina in \( D \).

Sa se deduca de aici teorema de punct fix a lui Brouwer pentru functia \( f: D\to D \).

American Mathematical Monthly, 1989
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza complexa”