Teorema Knaster

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Teorema Knaster

Post by Virgil Nicula »

Teorema Knaster. O functie \( f:[a,b]\rightarrow [a,b] \) ("dinamica") crescatoare
are un punct fix, adica exista \( c\in [a,b] \) astfel incat \( f(c)=c \) ,
unde \( c=\sup\ \left\{a\le x\le b\ |\ x\le f(x)\ \right\}\ . \) Aplicatie.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Pentru problema data la aplicatie (pe care am gresit-o de 2 ori :) ) ar trebui o teorema de unicitate a punctului fix....
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: Teorema Knaster

Post by Marius Mainea »

Virgil Nicula wrote:Teorema Knaster. O functie \( f:[a,b]\rightarrow [a,b] \) ("dinamica") crescatoare
are un punct fix, adica exista \( c\in [a,b] \) astfel incat \( f(c)=c \) ,
unde \( c=\sup\ \left\{a\le x\le b\ |\ x\le f(x)\ \right\}\ . \) Aplicatie.
Cazul 1. Daca \( c\in A=\left\{a\le x\le b\ |\ x\le f(x)\ \right\} \) atunci \( c\le f(c) \) si daca prin absurd \( c<f(c) \) atunci din monotonie

\( f(c)\le f(f(c)) \) rezulta \( f(c)\in A \) ceea ce contrazice faptul ca c este majorant al lui A.

Asadar \( f(c)=c \)

Cazul 2 Daca \( c\notin A \) atunci \( f(c)<c \) si cum c este cel mai mic majorant al lui A exista \( y\in A \) astfel incat \( f(c)<y<c \) si atunci din monotonie \( y\le f(y)\le f(c) \)

Ultimele relatii sunt contradictorii , asadar acest caz nu poate avea loc.
Post Reply

Return to “Clasa a X-a”