Se considera numerele \( x=m^3+1 \) si \( y=m^3-1 \), \( m\in\mathbb{Z} \). Sa se arate ca daca m nu se divide cu 7, atunci produsul xy se divide cu 7.
Concursul ,,Cezar Ivanescu'', Targoviste, 2003
Divizibilitate
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
Daca \( m \) nu se divide la \( 7 \), atunci este de forma \( M_7\pm 1, M_7\pm 2, M_7 \pm 3 \).
Observam ca \( m^6 \) este de forma \( M_7+1^6, M_7+2^6, M_7+3^6 \) sau \( M_7+1, M_7+64, M_7+729 \). Dar \( 1=7\cdot 0+1, 64=7\cdot 9+1, 729=7\cdot 104+1 \), deci de forma \( M_7+1 \).
Atunci \( xy=(m^3+1)(m^3-1)=m^6-1=M_7+1-1=M_7 \), deci se divide la 7.
Observam ca \( m^6 \) este de forma \( M_7+1^6, M_7+2^6, M_7+3^6 \) sau \( M_7+1, M_7+64, M_7+729 \). Dar \( 1=7\cdot 0+1, 64=7\cdot 9+1, 729=7\cdot 104+1 \), deci de forma \( M_7+1 \).
Atunci \( xy=(m^3+1)(m^3-1)=m^6-1=M_7+1-1=M_7 \), deci se divide la 7.
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)