Fie \( a,b,c>0 \) astfel incat \( \sum_{cyc}\frac{a}{b+c+1}=1. \) Demonstrati ca urmatoarea inegalitatea este satisfacuta:
\( \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\geq 1. \)
Inegalitate conditionata
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Inegalitate conditionata
Feuerbach
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Vezi aici
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Este suficient sa punem conditia \( abc\geq 1 \) si obtinem cunoscuta inegalitatea IMAR 2005, care se reduce la a demonstra inegalitatea sugerata de dumneavoasta, care la randul ei a fost data la Tournament of towns 1997.Marius Mainea wrote:Schimbarea conditiei conduce la urmatoarea inegalitate:
,,Fie a,b,c numere pozitive astfel incat abc=1. Sa se arate ca:
\( \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le 1 \)''
Feuerbach