Teorema trisectiei

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Teorema trisectiei

Post by Claudiu Mindrila »

Problema.(Teorema trisectiei) In triunghiul \( ABC \) fie medianele \( BB\prime \) si \( CC\prime \). Printr-un punct \( T \in (BC) \) se duc paralelele \( TD \) si \( TE \) la medianele \( BB\prime \) respectiv \( CC\prime, (D\in(AB), E\in(AC)) \). Atunci \( BB\prime \) si \( CC\prime \) impart \( DE \) in trei segmente congruente.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

ATENTIE, am schimbat notatiile din enuntul initial !
Fie \( \triangle\ ABC \) si mijloacele \( N \) , \( P \) ale lui \( [AC] \) , \( [AB] \) respectiv. Pentru \( M\in (BC) \) definim

\( \left|\ \begin{array}{ccc}
E\in AC & , & ME\ \parallel\ BN\\\\
F\in AB & , & MF\ \parallel\ CP\end{array}\ \ \wedge\ \ \begin{array}{c}
X\in BN\ \cap\ EF\\\\
Y\in EF\ \cap\ CP\end{array}\ \right|\ . \)
Sa se arate ca \( FX\ =\ XY\ =\ YE \) .
A cam trecut "neobservata" aceasta frumoasa problema. Chiar merita sa fie numita "teorema trisectiei".

Demonstratie. Aplicam teorema Menelaus transversalelor/triunghiurilor mentionate corespunzator :

\( \left|\ \begin{array}{cccc}
\overline {BNX}/AEF\ : & \frac {BF}{BA}\cdot\frac {NA}{NE}\cdot\frac {XE}{XF}=1 & \Longrightarrow & \frac {XE}{XF}=\frac {BA}{BF}\cdot\frac {NE}{NA}\\\\\\\\\\

\overline {CPY}/AEF\ : & \frac {CE}{CA}\cdot\frac {PA}{PF}\cdot\frac {YF}{YE}=1 & \Longrightarrow & \frac {YE}{YF}=\frac {CE}{CA}\cdot\frac {PA}{PF}\end{array}\ \right|\ . \)
Se observa usor ca :

\( \begin{array}{c}

\left|\ \begin{array}{c}
\frac {BA}{BF}=2\cdot\frac {BP}{BF}=2\cdot \frac {BC}{BM}\\\\\\\\
\frac {NE}{NA}=\frac {NE}{NC}=\frac {BM}{BC}\end{array}\ \right|\ \Longrightarrow\ \frac {BA}{BF}\cdot \frac {NE}{NA}=2\ \Longrightarrow\ \frac {XE}{XF}=2\\\\\\\\\\\\\\\\\\\\
\left|\ \begin{array}{c}
\frac {CE}{CA}=\frac 12\cdot\frac {CE}{CN}=\frac 12\cdot \frac {CM}{CB}\\\\\\\\
\frac {PA}{PF}=\frac {PB}{PF}=\frac {CB}{CM}\end{array}\ \right|\ \Longrightarrow\ \frac {CE}{CA}\cdot \frac {PA}{PF}=\frac 12\ \Longrightarrow\ \frac {YE}{YF}=\frac 12\end{array}\ \Longrightarrow\ FX\ =\ XY\ =\ XE\ . \)


Generalizare.
Virgil Nicula wrote:Fie triunghiul \( ABC \) si punctele \( \left|\ \begin{array}{ccc}
N\in (AC) & , & \frac {NA}{NC}=n\\\\\\\
P\in (AB) & , & \frac {PA}{PB}=p\end{array}\ \right|\ . \)
Pentru \( M\in (BC) \) definim punctele

\( \left|\ \begin{array}{ccc}
E\in AC & , & ME\ \parallel\ BN\\\\
F\in AB & , & MF\ \parallel\ CP\end{array}\ \ \wedge\ \ \begin{array}{c}
X\in BN\ \cap\ EF\\\\
Y\in EF\ \cap\ CP\end{array}\ \right|\ \Longrightarrow\ XY\ =\ \frac {FX}{n}\ =\ \frac {YE}{p}\ =\ \frac {EF}{n+p+1} \)
.
mihai miculita
Pitagora
Posts: 93
Joined: Mon Nov 12, 2007 7:51 pm
Location: Oradea, Romania

Post by mihai miculita »

Alta solutie:
\( \mbox{Folosind notatiile initiale si punand: } \{M\}=BB^{\prime}\cap DE; \{N\}=CC^{\prime}\cap DE\mbox{, avem de aratat ca: } |DM|=|MN|=|NE|.\\
1).\mbox{Daca: } \{G\}=BB^{\prime}\cap CC^{\prime} \mbox{, atunci }\\
\frac{|GB^{\prime}|}{|GB|}=\frac{|GC^{\prime}|}{|GC|}=\frac{1}{2}. \ (1)\\
2).\mbox{Notand cu } \{P\}=DT\cap BB^{\prime}\mbox{, avem:}\\
\left \begin{\array} {\frac{|GC^{\prime}|}{|GC|}=\frac{1}{2}}\ {(1)} \\
{DT||CC^{\prime}} \right\}\Rightarrow \frac{|DP|}{|PT|}=\frac{1}{2}.\ (2) \\
3). \\

\left \begin{\array} {\frac{|DP|}{|PT|}=\frac{1}{2}}\ {(2)} \\
{TE||PM} \right\}\Rightarrow \frac{|DM|}{|ME|}=\frac{1}{2}\Rightarrow \frac{|DM|}{|DE|}=\frac{1}{3}.\ (3) \\
\mbox{In mod analog aratam ca: } \frac{|NE|}{|DE|}=\frac{1}{3}. \ (4)\\
\mbox{In fine, din (3) si (4) }\Rightarrow |DM|=|MN|=|NE|. \)
Post Reply

Return to “Clasa a VII-a”