Daca a,b,c >0 si \( a^2+b^2+c^2=1 \) atunci
a) \( \frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\ge \frac{3\sqrt{3}}{3} \)
b) \( \frac{a}{1-a^4}+\frac{b}{1-b^4}+\frac{c}{1-c^4}\ge \frac{5\sqrt[4]{5}}{4} \)
Inegatitati conditionate
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
a) Relatia este echivalenta cu:
\( \sum\limits_{cyc} {\frac{{a^2 + b^2 }}{c}} \ge \sqrt 3 \)
\( \frac{1}{c} \le \frac{1}{b} \le \frac{1}{a}{\rm \ si\ a}^{\rm 2} + b^2 \le a^2 + c^2 \le b^2 + c^2 \)
Aplicam Cebasev:
\( \frac{2}{3}\left( {\frac{1}{c} + \frac{1}{b} + \frac{1}{a}} \right)\left( {a^2 + b^2 + c^2 } \right) \le \sum\limits_{cyc} {\frac{{{\rm a}^{\rm 2} + b^2 }}{c}}\Rightarrow \sum\limits_{cyc} {\frac{{{\rm a}^{\rm 2} + b^2 }}{c}} \ge \frac{2}{3}\left( {\sum {\frac{1}{a}} } \right) \)
Aplicam acum CBS:
\( \frac{2}{3}\left( {\frac{1}{c} + \frac{1}{b} + \frac{1}{a}} \right) \ge \frac{2}{3}\cdot 9\cdot \frac{1}{{a + b + c}} \ge \frac{6}{{\sqrt {3\left( {a^2 + b^2 + c^2 } \right)} }} = 2\sqrt 3 \ge \sqrt 3 \)
\( \sum\limits_{cyc} {\frac{{a^2 + b^2 }}{c}} \ge \sqrt 3 \)
\( \frac{1}{c} \le \frac{1}{b} \le \frac{1}{a}{\rm \ si\ a}^{\rm 2} + b^2 \le a^2 + c^2 \le b^2 + c^2 \)
Aplicam Cebasev:
\( \frac{2}{3}\left( {\frac{1}{c} + \frac{1}{b} + \frac{1}{a}} \right)\left( {a^2 + b^2 + c^2 } \right) \le \sum\limits_{cyc} {\frac{{{\rm a}^{\rm 2} + b^2 }}{c}}\Rightarrow \sum\limits_{cyc} {\frac{{{\rm a}^{\rm 2} + b^2 }}{c}} \ge \frac{2}{3}\left( {\sum {\frac{1}{a}} } \right) \)
Aplicam acum CBS:
\( \frac{2}{3}\left( {\frac{1}{c} + \frac{1}{b} + \frac{1}{a}} \right) \ge \frac{2}{3}\cdot 9\cdot \frac{1}{{a + b + c}} \ge \frac{6}{{\sqrt {3\left( {a^2 + b^2 + c^2 } \right)} }} = 2\sqrt 3 \ge \sqrt 3 \)
. A snake that slithers on the ground can only dream of flying through the air.