Fie \( a\in(0,1)\cup(1,\infty) \). Rezolvati ecuatia
\( \log_x (x+1)=\log_a (a+1) \).
Ecuatie logaritmica 4
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
Ecuatie logaritmica 4
Last edited by BogdanCNFB on Sat Feb 21, 2009 10:33 pm, edited 1 time in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
\( \log_x (x+1)=\log_a (a+1)\Rightarrow\frac{\log_a (x+1)}{\log_a x}=\log_a (a+1). \) Notam \( \log_a x=y\Rightarrow\frac{\log_a (a^y+1)}{y}=\log_a (a+1)\Rightarrow\frac{\log_a (a^y+1)}{\log_a (a+1)}=y\Rightarrow \)
\( \Rightarrow\log_{(a+1)} (a^y+1)=y\Rightarrow(a+1)^y=a^y+1\Rightarrow(\frac{a}{a+1})^y+(\frac{1}{a+1})^y=1\Rightarrow \) cu solutia unica \( y=1\Rightarrow x=a \) este solutie unica a ecuatiei.
\( \Rightarrow\log_{(a+1)} (a^y+1)=y\Rightarrow(a+1)^y=a^y+1\Rightarrow(\frac{a}{a+1})^y+(\frac{1}{a+1})^y=1\Rightarrow \) cu solutia unica \( y=1\Rightarrow x=a \) este solutie unica a ecuatiei.