Se considera functia \( f:\mathbb{R}\rightarrow\mathbb{R},f\left(x\right)=ax^{2}+bx+c \), \( a,b,c\in\mathbf{\mathbb{R}},a\neq0 \). Demonstrati echivalenta afirmatiilor:
i) Exista \( x\in\mathbb{Q},y\in\mathbb{R}-\mathbb{Q} \) si \( \lambda\in\mathbb{R} \) astfel incat \( f^{2}\left(x\right)+f^{2}\left(y\right)=2\lambda\left(f\left(x\right)+f\left(y\right)-\lambda\right). \)
ii) \( \frac{b}{a}\in\mathbb{R}-\mathbb{Q} \).
Dorin Popovici, concursul "Ion Ciolac", 2006
Functii
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Functii
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)