Functii

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Functii

Post by Claudiu Mindrila »

Se considera functia \( f:\mathbb{R}\rightarrow\mathbb{R},f\left(x\right)=ax^{2}+bx+c \), \( a,b,c\in\mathbf{\mathbb{R}},a\neq0 \). Demonstrati echivalenta afirmatiilor:
i) Exista \( x\in\mathbb{Q},y\in\mathbb{R}-\mathbb{Q} \) si \( \lambda\in\mathbb{R} \) astfel incat \( f^{2}\left(x\right)+f^{2}\left(y\right)=2\lambda\left(f\left(x\right)+f\left(y\right)-\lambda\right). \)
ii) \( \frac{b}{a}\in\mathbb{R}-\mathbb{Q} \).

Dorin Popovici, concursul "Ion Ciolac", 2006
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( i)\Rightarrow ii) \)

Se obtine \( f(x)=f(y)=\lambda \) si de aici \( x+y=-\frac{b}{a}\in\mathbb{R\setminus Q} \)

\( ii)\Rightarrow i) \) Se ia \( x=0,y=-\frac{b}{a},\lambda=c \)
Post Reply

Return to “Clasa a VIII-a”