a) Daca x este un numar real nenul astfel incat \( x+\frac{1}{x}\in \mathb{Z} \), atunci sa se arate ca \( x^n+\frac{1}{x^n}\in\mathb{Z} \) oricare ar fi n numar natural nenul.
b) Sa se arate ca \( (2+\sqrt{3})^n+(2-\sqrt{3})^n \in \mathb{N} \).
Inductie
a) Pentru \( n=1 \) se verifica.
Presupunem ca \( x^k+\frac{1}{x^k}\in\mathbf{Z}, \ \forall k=1,2,...,n \)
Avem ca \( \left(x+\frac{1}{x}\right)\left(x^n+\frac{1}{x^n}\right)\in\mathbf{Z} \)
Dar \( \left(x+\frac{1}{x}\right)\left(x^n+\frac{1}{x^n}\right)=x^{n+1}+\frac{1}{x^{n+1}}+x^{n-1}+\frac{1}{x^{n-1}} \)
Cum \( x^{n-1}+\frac{1}{x^{n-1}}\in\mathbf{Z} \) si toata expresia apartine lui Z, rezulta ca \( x^{n+1}+\frac{1}{x^{n+1}}\in\mathbf{Z} \)
b) Se aplica a) pentru \( x=a+\sqrt{3} \), cu x pozitiv, deci in loc de Z vom avea N.
Presupunem ca \( x^k+\frac{1}{x^k}\in\mathbf{Z}, \ \forall k=1,2,...,n \)
Avem ca \( \left(x+\frac{1}{x}\right)\left(x^n+\frac{1}{x^n}\right)\in\mathbf{Z} \)
Dar \( \left(x+\frac{1}{x}\right)\left(x^n+\frac{1}{x^n}\right)=x^{n+1}+\frac{1}{x^{n+1}}+x^{n-1}+\frac{1}{x^{n-1}} \)
Cum \( x^{n-1}+\frac{1}{x^{n-1}}\in\mathbf{Z} \) si toata expresia apartine lui Z, rezulta ca \( x^{n+1}+\frac{1}{x^{n+1}}\in\mathbf{Z} \)
b) Se aplica a) pentru \( x=a+\sqrt{3} \), cu x pozitiv, deci in loc de Z vom avea N.