Numere irationale

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Numere irationale

Post by Marius Mainea »

Sa se arate ca exista o infinitate de numere irationale x si y cu proprietatea \( x+y=x\cdot y\in\mathbb{N} \).
red_dog
Euclid
Posts: 26
Joined: Wed Sep 26, 2007 8:33 pm

Post by red_dog »

Cautam numere de forma \( x=a+\sqrt{b}, \ y=a-\sqrt{b} \) cu \( a,b\in\mathbf{Z} \) si b nu e patrat perfect.

Atunci obtinem relatia \( b=a^2-2a \) si pentru \( a\in\mathbf{Z}-\{0,2\} \) b nu este patrat perfect.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Notam \( n=x+y , n\ge5 \Rightarrow y=n-x \) si \( n=x(n-x) \Rightarrow x_{1,2}=\frac{1}{2}(n\pm \sqrt{n^2-4n}) \)
\( n\ge 5 \Rightarrow (n-3)^2<n^2-4n<(n-2)^2 \Rightarrow n^2-4n \) este irational .
Deci \( x=\frac{1}{2}(n+\sqrt{n^2-4n}) \) si \( y=\frac{1}{2}(n-\sqrt{n^2-4n}) \)
. A snake that slithers on the ground can only dream of flying through the air.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

red_dog wrote:Cautam numere de forma \( x=a+\sqrt{b}, \ y=a-\sqrt{b} \) cu \( a,b\in\mathbf{Z} \) si b nu e patrat perfect.
De fapt, trebuie ca \( b \in \mathbb{N}^* \), altfel pentru \( b\le 0 \) numarul \( \sqrt{b} \) nu este definit.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VIII-a”