Numere irationale
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Numere irationale
Sa se arate ca exista o infinitate de numere irationale x si y cu proprietatea \( x+y=x\cdot y\in\mathbb{N} \).
Notam \( n=x+y , n\ge5 \Rightarrow y=n-x \) si \( n=x(n-x) \Rightarrow x_{1,2}=\frac{1}{2}(n\pm \sqrt{n^2-4n}) \)
\( n\ge 5 \Rightarrow (n-3)^2<n^2-4n<(n-2)^2 \Rightarrow n^2-4n \) este irational .
Deci \( x=\frac{1}{2}(n+\sqrt{n^2-4n}) \) si \( y=\frac{1}{2}(n-\sqrt{n^2-4n}) \)
\( n\ge 5 \Rightarrow (n-3)^2<n^2-4n<(n-2)^2 \Rightarrow n^2-4n \) este irational .
Deci \( x=\frac{1}{2}(n+\sqrt{n^2-4n}) \) si \( y=\frac{1}{2}(n-\sqrt{n^2-4n}) \)
. A snake that slithers on the ground can only dream of flying through the air.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact: