Fie \( \triangle ABC \) si punctele \( \left\|\ \begin{array}{ccc}
E\in (AC) & , & \widehat {EBA}\equiv\widehat {EBC}\\\\
F\in (AB) & , & \widehat {FCA}\equiv\widehat {FCB}\end{array}\ \right\|\ . \) Sa se arate ca \( \frac {2\cdot EF}{a\sqrt {bc}}\ \le\ \frac {1}{a+b}+\frac {1}{a+c}\ . \)
O inegalitate speciala.
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Aplicand teorema bisectoarei se obtine \( AE=\frac{bc}{a+b} \) si \( AF=\frac{bc}{a+c} \) notatiile fiind cele consacrate.
Din teorema cosinusului \( EF=\sqrt{AE^2+AF^2-2\cdot AE\cdot AF\cos A}, \)
unde \( \cos A=\frac{b^2+c^2-a^2}{2bc} \).
Astfel inegalitate se reduce dupa inlocuire si aducere la acelasi numitor la
\( 2\sqrt{bc[(a+b)^2+(a+c)^2]-(a+b)(a+c)(b^2+c^2-a^2)}\le a(2a+b+c). \)
Apoi desfacand parantezele si ridicand la patrat se obtine
\( 0\le a(b-c)^2(5a+4b+4c) \) care este adevarat, cu egalitate daca si numai daca triunghiul este isoscel cu \( b=c \).
Din teorema cosinusului \( EF=\sqrt{AE^2+AF^2-2\cdot AE\cdot AF\cos A}, \)
unde \( \cos A=\frac{b^2+c^2-a^2}{2bc} \).
Astfel inegalitate se reduce dupa inlocuire si aducere la acelasi numitor la
\( 2\sqrt{bc[(a+b)^2+(a+c)^2]-(a+b)(a+c)(b^2+c^2-a^2)}\le a(2a+b+c). \)
Apoi desfacand parantezele si ridicand la patrat se obtine
\( 0\le a(b-c)^2(5a+4b+4c) \) care este adevarat, cu egalitate daca si numai daca triunghiul este isoscel cu \( b=c \).