Problema propusa. Sa se arate ca intr-un triunghi \( ABC \) avem
\( b+c=2a\ \Longrightarrow\ a=2\sqrt {r(2R-r)}\ . \) Este adevarat si reciproc ?
ATENTIE ! Voi oferi cartea mea "Diviziune armonica" celui care imi va trimite (prin mesaj privat) cea mai frumoasa si ingrijit redactata solutie. Eu zic ca problema e "incalcita rau". Succes in noul an si ... La Multi Ani !
Cadou de an nou: b+c=2a (incalcita rau).
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Folosind relatia \( a=2R\sin A \) si analoagele, relatia b+c=2a este echivalenta cu \( \sin B+\sin C=2\sin A \) sau
\( \cos {\frac{B-C}{2}}=2\sin \frac{A}{2} \) (**)
Deasemenea, dintr-o problema propusa acum 4 zile de dl Nicula (Inegalitate clasica (de manual...vechi!)) conditia din enunt este echivalenta cu
\( \sqrt{\frac{2r}{R}}=\cos\frac{B-C}{2} \)
deci
\( 2r=R\cos^2\frac{B-C}{2} \) (***)
Asadar
\( 2\sqrt{r(2R-r)}=\sqrt{R\cos^2\frac{B-C}{2}(4R-\cos^2\frac{B-C}{2})}= \)
\( R\cos\frac{B-C}{2}\sqrt{4-4\sin^2\frac{A}{2}}=2R\cos\frac{B-C}{2}\cos\frac{A}{2}= \)
\( 2R2\cos\frac{A}{2}\sin\frac{A}{2}=2R\sin A=a \).
\( \cos {\frac{B-C}{2}}=2\sin \frac{A}{2} \) (**)
Deasemenea, dintr-o problema propusa acum 4 zile de dl Nicula (Inegalitate clasica (de manual...vechi!)) conditia din enunt este echivalenta cu
\( \sqrt{\frac{2r}{R}}=\cos\frac{B-C}{2} \)
deci
\( 2r=R\cos^2\frac{B-C}{2} \) (***)
Asadar
\( 2\sqrt{r(2R-r)}=\sqrt{R\cos^2\frac{B-C}{2}(4R-\cos^2\frac{B-C}{2})}= \)
\( R\cos\frac{B-C}{2}\sqrt{4-4\sin^2\frac{A}{2}}=2R\cos\frac{B-C}{2}\cos\frac{A}{2}= \)
\( 2R2\cos\frac{A}{2}\sin\frac{A}{2}=2R\sin A=a \).
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Off-topic
Alte cateva proprietati are triunghiului cu laturile in progresie aritmetica:
Toate cele bune,
Claudiu Mindrila
Alte cateva proprietati are triunghiului cu laturile in progresie aritmetica:
- \( \frac{2}{h_{a}}=\frac{1}{h_{b}}+\frac{1}{h_{c}} \)
\( 4\cos A+\cos\left(B-C\right)=3 \)
\( \sin\frac{A}{2}=\frac{1}{2}\cos\frac{B-C}{2} \)
\( 2i_{a}=\sqrt{3bc} \)
\( 3\tan\frac{B}{2}\tan\frac{C}{2}=1 \)
\( 3\tan\frac{B}{2}\tan\frac{C}{2}=1 \)
\( 3\sin^{2}\frac{A}{2}=\sin B\sin C \)
\( 2\cos A+\cos B+\cos C=2 \)
Toate cele bune,
Claudiu Mindrila