AH=r <=> OD=OI

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

AH=r <=> OD=OI

Post by Virgil Nicula »

Fie triunghiul ascutitunghic \( ABC \) cu ortocentrul \( H \), incercul \( w = C(I,r) \) si circumcercul \( C(O) \).
Notam punctul \( D \) unde cercul \( w \) atinge dreapta \( BC \). Sa se arate ca \( AH = r\ \Longleftrightarrow\ OI = OD \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosim relatiile:

\( AH=2R\cos A \), \( OI^2=R^2-2Rr \), \( BD\cdot DC=R^2-OD^2, r=4r\sin{\frac{A}{2}}\sin{\frac{B}{2}}\sin{\frac{C}{2}}, BD=p-b, DC=p-c \).

Avem \( AH=r\Longleftrightarrow 2R\cos A=r \Longleftrightarrow \cos B+\cos C - \cos A=1 \).

Deasemenea \( OI=OD \Longleftrightarrow (p-b)(p-c)=2Rr\Longleftrightarrow \cos B+\cos C-\cos A=1 \).
Post Reply

Return to “Clasa a IX-a”