Inegalitate conditionata

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inegalitate conditionata

Post by Marius Mainea »

Daca a,b,c sunt numere pozitive cu abc=1, atunci

\( \frac{a^2+b^2}{a^2+b^2+1}+\frac{b^2+c^2}{b^2+c^2+1}+\frac{c^2+a^2}{c^2+a^2+1}\ge \frac{a+b}{a^2+b^2+1}+\frac{b+c}{b^2+c^2+1}+\frac{c+a}{c^2+a^2+1} \)

Jingjun Han, Mathematical Reflections 6/2008
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Deoarece \( \frac{a^{2}+b^{2}}{a^{2}+b^{2}+1}=1-\frac{1}{a^{2}+b^{2}+1} \) problema se reduce la a demonstra inegalitatea \( \sum\frac{a+b+1}{a^{2}+b^{2}+1}\leq3. \) Dar cum \( a^{2}+b^{2}+1\geq\frac{\left(a+b+1\right)^{2}}{3} \) avem \( \sum\frac{a+b+1}{a^{2}+b^{2}+1}\leq\sum\frac{3\left(a+b+1\right)}{\left(a+b+1\right)^{2}}=3\cdot\sum\frac{1}{a+b+1}. \) Mai ramane de demonstrat ca \( \sum\frac{1}{a+b+1}\leq1. \). Fie \( a=x^{3},b=y^{3},c=z^{3} \) cu \( x,y,z\geq0 \) si \( xyz=1. \). Rezulta ca
\( \sum\frac{1}{a+b+1}=\sum\frac{1}{x^{3}+y^{3}+xyz}\leq\sum\frac{1}{xy\left(x+y\right)+xyz}=\sum\frac{1}{xy\left(x+y+z\right)}=\sum\frac{z}{x+y+z}=1 \qed \).
Observatie. Pentru ultima inegalitate am folosit faptul ca pentru orice \( m,n \in \mathbb{R} \) avem \( m^3+n^3 \geq mn(m+n) \left(\Longleftrightarrow (m-n)^2(m+n) \geq 0 \right ) \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
baleanuAR
Euclid
Posts: 28
Joined: Sun Mar 01, 2009 7:47 pm
Location: Motru, Gorj

Post by baleanuAR »

:)
Post Reply

Return to “Inegalitati”