Inegalitate in cub. Olimpiada Judeteana 2002

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate in cub. Olimpiada Judeteana 2002

Post by Claudiu Mindrila »

Fie cubul \( ABCD A\prime B\prime C\prime D\prime \) cu muhcia de lungime \( a \). Se considera punctele \( K \in [AB] \), \( L \in [CC\prime] \), \( M \in [D\prime A\prime] \).
a) Aratati ca \( \sqrt{3} \cdot KB \geq KB+BC+CL \).
b) Aratati ca perimetrul triunghiului \( KLM \) este mai mare strict decat \( 2a\sqrt{3} \).

D. Branzei, R. Gologan, Olimpiada Judeteana de Matematica, 2002
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

La primul punct trebuia \( \sqrt{3}KL\ge KB+BC+CL \)


a) Notam KB=x , CL=y si \( KL=\sqrt{x^2+a^2+y^2} \) si inegalitate este echivalenta cu \( \sqrt{3(x^2+a^2+y^2)}\ge x+a+y \)

b) Procedand analog \( \sqrt{3}MK\ge AK+AA^{\prime}+MA^{\prime} \)

\( \sqrt{3}ML\ge MD^{\prime}+D^{\prime}C^{\prime}+C^{\prime}L \)

si apoi prin adunare rezulta concluia.
Post Reply

Return to “Clasa a VIII-a”