\( \triangle\ ABC\ \ :\ \ \left\|\ \begin{array}{ccc} D\in (BC) & , & \widehat {DAB}\equiv\widehat {DAC} \\
\ K\in AD & , & BK\perp AD \\
\ H\in BC & , & AH\perp BC \\
\ X\in AB\cap HK & , & Y\in AC\cap XD\end{array}\ \right\|\ \Longrightarrow\ \overline {\underline {\left\|\ YA = YC\ \Longleftrightarrow\ A = 90^{\circ}\ \right\|}} \)
YA=YC <=> A=90
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Folosim :
Lema Daca AD este inaltime in triunghiul ascutitunghic ABC atunci \( \frac{BD}{DC}=\frac{\tan C}{\tan B} \)
Asadar daca presupunem ca \( A=90^{\circ} \) din teorema lui Menelaus \( \frac{AX}{XB}\cdot\frac{\tan D}{\tan B}\cdot\frac{\tan A}{\tan D}=1 \)
deci \( \frac{AX}{XB}=\tan B \) (1)
Tot din teorema lui Menelaus \( \frac{AX}{XB}\cdot\frac{AB}{AC}\cdot\frac{CY}{YA}=1 \) (2)
Din (1) & (2) rezulta ca CY=YA.
Reciproc analog presupunand ca CY=YA, obtinem ca \( \tan A=1 \)
Lema Daca AD este inaltime in triunghiul ascutitunghic ABC atunci \( \frac{BD}{DC}=\frac{\tan C}{\tan B} \)
Asadar daca presupunem ca \( A=90^{\circ} \) din teorema lui Menelaus \( \frac{AX}{XB}\cdot\frac{\tan D}{\tan B}\cdot\frac{\tan A}{\tan D}=1 \)
deci \( \frac{AX}{XB}=\tan B \) (1)
Tot din teorema lui Menelaus \( \frac{AX}{XB}\cdot\frac{AB}{AC}\cdot\frac{CY}{YA}=1 \) (2)
Din (1) & (2) rezulta ca CY=YA.
Reciproc analog presupunand ca CY=YA, obtinem ca \( \tan A=1 \)