Concursul "Nicolae Paun", 2008, problema 2

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Concursul "Nicolae Paun", 2008, problema 2

Post by Claudiu Mindrila »

a) Sa se arate ca orice numar real se poate scrie ca produs de doua numere irationale diferite si ca un produs de trei numere irationale diferite.
b) Sa se arate ca orice numar real se poate scrie ca suma de \( 2008 \) numere rationale diferite.
Lavinia Savu
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

In primul rand trebuia nr real nenul

a) daca \( x\in \mathbb{Q} \)

\( x=\frac{x}{\sqrt{2}}\cdot \sqrt{2} \) , \( x=\frac{x}{\sqrt{3}}\cdot \sqrt{3} \) \( x=\frac{x}{\sqrt[3]{6}}\cdot \sqrt[3]{2}\cdot \sqrt[3]{3} \)

Daca \( x\notin\mathbb{Q} \) \( x=sgn(x)\cdot \sqrt{\frac{|x|}{2}}\cdot \sqrt{2|x|} \)

\( x=\sqrt[3]{\frac{x}{6}}\cdot \sqrt[3]{2x}\cdot \sqrt[3]{3x} \)


In al doilea rand la b) trebuia nr irationale diferite.

b) Daca \( x\notin\mathbb{Q} \) \( s=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2008} \)

atunci \( x=\frac{x}{s}+\frac{x}{2s}+\frac{x}{3s}+....+\frac{x}{2008s} \)

Daca \( x\in \mathbb{Q} \) \( x=\frac{1}{\sqrt{2009}-1}\cdot (\frac{x}{\sqrt{2}+1}+\frac{x}{\sqrt{3}+\sqrt{2}}+...+\frac{x}{\sqrt{2009}+\sqrt{2008}}) \)
Post Reply

Return to “Clasa a VIII-a”