Inegalitati pentru vacanta de iarna

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitati pentru vacanta de iarna

Post by Claudiu Mindrila »

\( 1. \)
Fie \( a,b,c \) numere pozitive astfel incat \( abc=1 \). Sa se arate ca: \( \frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a} \leq 1. \)

\( 2. \)
Daca \( a,b,c \in (0, +\infty) \) atunci: \( \frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc} \leq \frac{1}{abc} \)

\( 3. \)
Daca \( x,y,z \) sunt numere pozitive astfel incat \( x+y+z=1 \) atunci are loc inegalitatea: \( \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy} \leq 2. \)
Titu Zvonaru, Bogdan Ionita, Concursul "Revistei Arhimede", 2006
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Primele doua inegalitati sunt echivalente.

\( \sum{\frac{1}{a^3+b^3+abc}}\le \sum{\frac{1}{ab(a+b)+abc}}=\sum{\frac{c}{a+b+c}}=1 \)

Pentru a treia \( LHS=\sum{\sqrt{(1-y)(1-z)}}\le \sum{\frac{1-y+1-z}{2}}=2 \)
Post Reply

Return to “Clasa a VIII-a”