Set de inegalitati pentru vacanta de iarna
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Set de inegalitati pentru vacanta de iarna
\( 1. \)
Fie \( x,y,z\in \mathbb{R} \) cu \( x+y+z=1 \). Sa se arate ca:
\( x^2+y^2+z^2\geq 4 \cdot (xy+yz+zx)-1 \). In ce caz are loc egalitatea?
V. Branzanescu, O.N.M. 1990
\( 2. \)
Fie \( a,b,c \in [0,1] \) astfel incat \( ab+bc+ca=1. \) Demonstrati ca \( a^{2006}+b^{2006}+c^{2006} \leq 2 \).
Concursul "Cezar Ivanescu", 2006
\( 3. \)
Sa se arate ca \( \sqrt{abc}+\sqrt{(1-a)(1-b)(1-c)}<1 \), oricare ar fi numerele reale \( a,b,c \in (0,1) \).
Dinu Serbanescu, Test de Selectie pentru OBMJ, 2002
\( 4. \)
Fie \( a,b,c \) numere pozitive astfel incat \( a+b+c \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}. \) Aratati ca \( a+b+c\geq \frac{3}{abc} \)
Cezar Lupu, Test de Selectie pentru OBMJ, 2005
\( 5. \)
Fie \( x,y,z \) numere reale pozitive cu proprietatea ca: \( \frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2. \) Sa se demonstreze ca \( 8xyz \leq 1 \).
Mircea Lascu, Test de Selectie pentru OBMJ, 2006
Fie \( x,y,z\in \mathbb{R} \) cu \( x+y+z=1 \). Sa se arate ca:
\( x^2+y^2+z^2\geq 4 \cdot (xy+yz+zx)-1 \). In ce caz are loc egalitatea?
V. Branzanescu, O.N.M. 1990
\( 2. \)
Fie \( a,b,c \in [0,1] \) astfel incat \( ab+bc+ca=1. \) Demonstrati ca \( a^{2006}+b^{2006}+c^{2006} \leq 2 \).
Concursul "Cezar Ivanescu", 2006
\( 3. \)
Sa se arate ca \( \sqrt{abc}+\sqrt{(1-a)(1-b)(1-c)}<1 \), oricare ar fi numerele reale \( a,b,c \in (0,1) \).
Dinu Serbanescu, Test de Selectie pentru OBMJ, 2002
\( 4. \)
Fie \( a,b,c \) numere pozitive astfel incat \( a+b+c \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}. \) Aratati ca \( a+b+c\geq \frac{3}{abc} \)
Cezar Lupu, Test de Selectie pentru OBMJ, 2005
\( 5. \)
Fie \( x,y,z \) numere reale pozitive cu proprietatea ca: \( \frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2. \) Sa se demonstreze ca \( 8xyz \leq 1 \).
Mircea Lascu, Test de Selectie pentru OBMJ, 2006
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
4.
\( abc(a + b + c) \geq bc + ca + ab \geq \sqrt {3abc(a + b + c)} \)
Deci
\( abc(a + b + c) \geq 3 \)
\( abc(a + b + c) \geq bc + ca + ab \geq \sqrt {3abc(a + b + c)} \)
Deci
\( abc(a + b + c) \geq 3 \)
Last edited by alex2008 on Sat May 23, 2009 7:59 pm, edited 1 time in total.
. A snake that slithers on the ground can only dream of flying through the air.
3.
\( \sqrt {abc} + \sqrt {\left( 1 - a\right) \left( 1 - b\right) \left( 1 - c\right) } = \sqrt {a}\sqrt {bc} + \sqrt {1 - a}\sqrt {\left( 1 - b\right) \left( 1 - c\right) }\leq \sqrt {a + \left( 1 - a\right) }\sqrt {bc + \left( 1 - b\right) \left( 1 - c\right) } = \sqrt {bc + \left( 1 - b\right) \left( 1 - c\right) } = \sqrt {1 - \left( b + c\right) + 2bc} < 1 \)
\( \sqrt {abc} + \sqrt {\left( 1 - a\right) \left( 1 - b\right) \left( 1 - c\right) } = \sqrt {a}\sqrt {bc} + \sqrt {1 - a}\sqrt {\left( 1 - b\right) \left( 1 - c\right) }\leq \sqrt {a + \left( 1 - a\right) }\sqrt {bc + \left( 1 - b\right) \left( 1 - c\right) } = \sqrt {bc + \left( 1 - b\right) \left( 1 - c\right) } = \sqrt {1 - \left( b + c\right) + 2bc} < 1 \)
. A snake that slithers on the ground can only dream of flying through the air.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
1. Alta solutie:
Notam \( x-\frac{1}{3}=a \) si analoagele, de unde \( a+b+c=0 \).
Relatia de demonstrat devine:
\( \left\(a+\frac{1}{3}\right\)^2+\left\(b+\frac{1}{3}\right\)^2+\left\(c+\frac{1}{3}\right\)^2\ge 4\left\[\left\(a+\frac{1}{3}\right\)\left\(b+\frac{1}{3}\right\)+\left\(b+\frac{1}{3}\right \) \left\(c+\frac{1}{3}\right \)+\left\(c+\frac{1}{3}\right \)\left\(a+\frac{1}{3}\right\) \right\]-1 \)
\( \Longleftrightarrow a^2+b^2+c^2\ge 4(ab+bc+ca),\ c=-a-b \)
\( \Longleftrightarrow a^2+b^2+ab\ge0 \)
\( \Longleftrightarrow \left\(a+\frac{b}{2}\right\)^2+\frac{3b^2}{4}\ge0. \)
Notam \( x-\frac{1}{3}=a \) si analoagele, de unde \( a+b+c=0 \).
Relatia de demonstrat devine:
\( \left\(a+\frac{1}{3}\right\)^2+\left\(b+\frac{1}{3}\right\)^2+\left\(c+\frac{1}{3}\right\)^2\ge 4\left\[\left\(a+\frac{1}{3}\right\)\left\(b+\frac{1}{3}\right\)+\left\(b+\frac{1}{3}\right \) \left\(c+\frac{1}{3}\right \)+\left\(c+\frac{1}{3}\right \)\left\(a+\frac{1}{3}\right\) \right\]-1 \)
\( \Longleftrightarrow a^2+b^2+c^2\ge 4(ab+bc+ca),\ c=-a-b \)
\( \Longleftrightarrow a^2+b^2+ab\ge0 \)
\( \Longleftrightarrow \left\(a+\frac{b}{2}\right\)^2+\frac{3b^2}{4}\ge0. \)
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti