N. Paun, 1996

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

N. Paun, 1996

Post by Marius Mainea »

Aratati ca daca a,b,c sunt numere rationale pozitive, atunci numarul \( \sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\(\frac{a+b+c}{ab+bc+ca}\)^2} \) este rational.

GM 6\1994
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

\( \sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\left(\frac{a+b+c}{ab+bc+ca}\right)^{2}}=\sqrt{\frac{\sum a^{2}b^{2}}{a^{2}b^{2}c^{2}}+\frac{\left(a+b+c\right)^{2}}{\left(ab+bc+ca\right)^{2}}}=\sqrt{\frac{\left(\sum a^{2}b^{2}\right)^{2}+2abc(a+b+c)\cdot\sum a^{2}b^{2}+a^{2}b^{2}c^{2}\left(a+b+c\right)^{2}}{a^{2}b^{2}c^{2}\left(ab+bc+ca\right)^{2}}}=
\sqrt{\frac{\left(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}+2abc\left(a+b+c\right)\right)^{2}}{a^{2}b^{2}c^{2}\left(ab+bc+ca\right)^{2}}} \)
.
Deci
\( LHS=\frac{\left(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}+2abc\left(a+b+c\right)\right)}{abc\left(ab+bc+ca\right)}=\frac{1}{ab+bc+ca}\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)+2\cdot\frac{a+b+c}{ab+bc+ca}\in\mathbb{Q} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

e fara 2 acolo sub patrat
n-ar fi rau sa fie bine :)
Post Reply

Return to “Clasa a VIII-a”