O limita cu sirul armonic

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

O limita cu sirul armonic

Post by Cezar Lupu »

Sa se calculeze \( \lim_{n\to\infty} e^{H_{n+1}}-e^{H_{n}} \), unde \( H_{n}=1+\frac{1}{2}+\ldots +\frac{1}{n} \) este sirul armonic.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

E echivalenta cu :

\( \lim_{n}\frac{e^{H_{n}}}{n+1}\cdot \frac{e^{\frac{1}{n+1}}-1}{\frac{1}{n+1}}= \lim_{n} (e^{H_{n}-\ln(n)})\cdot \frac{n}{n+1}=e^c \) ,unde c este constanta lui Euller
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza matematica”