Problema superba de geometrie in spatiu

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Problema superba de geometrie in spatiu

Post by Claudiu Mindrila »

In tetraedrul \( ABCD \) punctele \( E \) si \( F \) sunt mijloacele medianelor \( AM \) si \( AN \) ale triunghiurilor \( ABC \) respectiv\( ACD \). Daca \( CE \cap AB={P} \), \( CF \cap AD={Q}, DF \cap AC={R} \), demonstrati ca:
a) \( 9\text{Aria}(PQR)=\text{Aria}(BCD) \);
b) \( 12(PQ+EF+MN)=13BD \).
Virginia si Vasile Tica, lista scurta,2002
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

a) Din teorema lui Menelaus \( \frac{AP}{BP}=\frac{AR}{RC}=\frac{AQ}{QD}=\frac{1}{2} \)
Deci \( \triangle PQR \sim \triangle BDC \) cu raportul de asemanare \( \frac{1}{3} \)

Rezulta imediat din \( BD=3PQ=2MN=4EF \)
Post Reply

Return to “Clasa a VIII-a”