In \( \Delta ABC \) se considera bisectoarele \( (AA_1,(BB_1,(CC_1 \) si \( I \) centrul cercului inscris in \( \Delta ABC \) .
a)Sa se exprime \( \vec{AI} \) si \( \vec{AA_1} \) cu ajutorul lui \( \vec{AB} \) si \( \vec{AC} \).
b)Daca \( \vec{AA_1}+\vec{AA_2}+\vec{AA_3}=0 \) , sa se arate ca \( \Delta ABC \) este echilateral .
Dolj 2008
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
a) Se foloseste relatia \( \vec{AA_1}=\frac{1}{k+1}\vec{AB}+\frac{k}{k+1}\vec{AC} \) unde \( k=\frac{A_1B}{A_1C} \)
b) Daca \( \vec{AA_1}+\vec{BB_1}+\vec{CC_1}=\vec{0} \) atunci triunghiurile \( ABC \) si \( A_1B_1C_1 \) au acelasi centru de greutate deci conform teoremei lui Pappus \( \frac{BA_1}{A_1C}=\frac{CB_1}{B_1A}=\frac{AC_1}{C_1A} \) de unde folosind teorema bisectoarei obtinem ca \( A_1,B_1,C_1 \) sunt mijloacele laturilor si de aici \( ABC \) este echilateral.
b) Daca \( \vec{AA_1}+\vec{BB_1}+\vec{CC_1}=\vec{0} \) atunci triunghiurile \( ABC \) si \( A_1B_1C_1 \) au acelasi centru de greutate deci conform teoremei lui Pappus \( \frac{BA_1}{A_1C}=\frac{CB_1}{B_1A}=\frac{AC_1}{C_1A} \) de unde folosind teorema bisectoarei obtinem ca \( A_1,B_1,C_1 \) sunt mijloacele laturilor si de aici \( ABC \) este echilateral.