O inegalitate in doua variabile pozitive.

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

O inegalitate in doua variabile pozitive.

Post by Virgil Nicula »

Fie doua numere pozitive \( a \), \( b \). Se arata usor ca \( (a+b)^4\le \left(a^2+3b^2\right)\left(b^2+3a^2\right). \)

Sa se arate o "intarire" a acesteia : \( (a+b)^4\le \overline {\underline {\left\|\ (a+b)^3\sqrt {2\left(a^2+b^2\right)}\le \left(a^2+3b^2\right)\left(b^2+3a^2\right)\ \right\|}}\ . \)
Last edited by Virgil Nicula on Sun Sep 20, 2009 11:33 pm, edited 2 times in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

RHS=\( (a^2+b^2+b^2+b^2)(a^2+a^2+a^2+b^2)\ge (aa+ba+ba+bb)^2=(a+b)^4 \)
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

\( ((a^2+3b^2)(3a^2+b^2))^2-2(a+b)^6(a^2+b^2)=2((a^3-b^3)(a-b))^2+2ab(a^4+b^4)(a-b)^2+5(a^6+b^6)(a-b)^2+25a^2b^2(a^2+b^2)(a-b)^2 \)
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: O inegalitate in doua variabile pozitive.

Post by Marius Mainea »

Virgil Nicula wrote: \( \overline {\underline {\left\|\ (a+b)^3\sqrt {2\left(a^2+b^2\right)}\le \left(a^2+3b^2\right)\left(b^2+3a^2\right)\ \right\|}}. \)
Notam \( \frac{a}{b}=x>0 \) si inegalitatea este echivalenta cu

\( (x^2+3)^2(1+3x^2)^2-2(x+1)^6(x^1+1)\ge 0 \)

sau

\( (x-1)^2(7x^6+2x^5+25x^4-4x^3+25x^2+2x+7)\ge 0 \)
Post Reply

Return to “Clasa a IX-a”