Spatiu arc conex

Moderators: Mihai Fulger, Liviu Paunescu

Post Reply
User avatar
Dragos Fratila
Newton
Posts: 313
Joined: Thu Oct 04, 2007 10:04 pm

Spatiu arc conex

Post by Dragos Fratila »

Fie \( X \) un spatiu arc-conex si \( A \) si \( B \) doua submultimi ale sale disjuncte si nevide.
Daca bordul lui \( A \) = bordul lui \( B \) rezulta ca \( \overline{A}\cup B=X \) ?

AMM 3011 - Calin Popescu
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Bordul lui \( A \) e cumva \( X\setminus (int(A)\cup ext(A)) \)?
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Dragos Fratila
Newton
Posts: 313
Joined: Thu Oct 04, 2007 10:04 pm

Post by Dragos Fratila »

Daca ext inseamna elementele din inchidere care nu sunt in multime atunci da.
Se mai poate scrie \( \partial(A) = \overline{A}-A^\circ \), unde \( A^\circ \) este interiorul lui A.
"Greu la deal cu boii mici..."
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Pai cred ca daca am inteles bine problema e foarte simpla. \( \mathbb{R} \) e arc-conex. Daca luam \( A=[0,1]\cap \mathbb{Q}, B=[0,1]\cap (\mathbb{R}\setminus \mathbb{Q}) \), atunci \( A,B \) sunt disjuncte si \( bd(A)=bd(B)=[0,1] \). Dar \( \bar{A}\cup B=[0,1]\neq \mathbb{R} \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Dragos Fratila wrote:Daca ext inseamna elementele din inchidere care nu sunt in multime atunci da.
Se mai poate scrie \( \partial(A) = \overline{A}-A^\circ \), unde \( A^\circ \) este interiorul lui A.
In ceea ce am scris \( ext(A) \) este exteriorul lui \( A \) sau interiorul complementarei lui \( A \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Topologie generala”