Cristian Calude, proba pe echipe, R.I, P.III

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Cristian Calude, proba pe echipe, R.I, P.III

Post by Laurian Filip »

Sa se rezolve in multimea numerelor naturale ecuatia:
\( (x^2+y^2+10)\left[ \frac{x}{y}+20 \right] = 1995 \). S-a notat [a]= partea intreaga a numarului real a.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

\( 1995 = 3 \cdot 5 \cdot 7 \cdot 19 \)

Astfel avem ca :

\( \left[\frac {x}{y} + 20\right] = 21 \) sau \( \left[\frac {x}{y} + 20\right]\ge 35 \)

Daca \( \left[\frac {x}{y} + 20\right] \ge 35 \), \( x \ge 15y \ge 15 \) \( \Rightarrow LHS > 1995 \) , imposibil .

Daca \( \left[\frac {x}{y} + 20\right] = 21 \) , atunci \( \Leftrightarrow \)

\( \begin{cases} x^2 + y^2 = 85 \\
2y > x\ge y \end{cases} \)


Deci \( (x,y) = (7,6) \) este singura solutie .
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Clasa a 8-a”