Aflati

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Aflati

Post by alex2008 »

Sa se afle orice x,y reale stiind ca \( (x+y)^2=(x+1)(y-1). \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notam x+1=a si y-1=b si ecuatia devine :

\( (a+b)^2=ab \) de unde \( a^2+b^2+ab=0 \)

deci \( (a+\frac{b}{2})^2+\frac{3b^2}{4}=0 \)

Rezulta a=b=0 si x=-1 , y=1.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Altfel :
\( x^2+2xy+y^2=xy-x+y-1 \)
\( x^2+x(y+1)+y^2-y+1=0 \)
\( x \in \mathb {R} \) , deci \( \Delta_x\ge0 \)
Rezulta ca \( (y+1)^2-4(y^2-y+1)\ge0 \) si se ajunge la \( (y-1)^2\le0 \) , deci \( y=1 \) si \( x=-1 \)
Post Reply

Return to “Clasa a IX-a”