3 inecuatii 3 necunoscute

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Al3xx
Euclid
Posts: 35
Joined: Fri Nov 07, 2008 10:39 pm
Location: Slatina

3 inecuatii 3 necunoscute

Post by Al3xx »

Aflati \( x,y,z \) din:

\( 4|x|(1-y^2)\ge(1+z^2)^2 \)

\( 4|y|(1-z^2)\ge(1+x^2)^2 \)

\( 4|z|(1-x^2)\ge(1+y^2)^2 \)

Este un sistem, dar nu am stiut cum se face.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Toti membrii sunt pozitivi , deci inmultind : \( \prod 4|x|(1 - x^2) \ge \prod (1 + x^2)^2 \).

Trebuie ca , cel putin una dintre inegalitatile : \( 4|x|(1 - x^2) \ge (1 + x^2)^2\ ,\ 4|y|(1 - y^2) \ge (1 + y^2)^2\ ,\ 4|z|(1 - z^2) \ge (1 + z^2)^2 \) sa fie adevarata , fie aceasta \( 4|x|(1 - x^2) \ge (1 + x^2)^2 \) .

Fie \( k = |x|\ ,\ k \ge 0 \) , si dezvoltand avem \( 4k - 4k^3 \ge 1 + 2k^2 + k^4 \Longleftrightarrow 0 \ge k^4 + 4k^3 + 2k^2 - 4k + 1 = (k^2 + 2k - 1)^2 \) .

Deci \( k = \sqrt {2} - 1 \) . Egalitatea trebuie sa aiba loc si pentru \( y,z \) , deci \( x,y,z = \pm \left(\sqrt {2} - 1\right) \).
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Clasa a IX-a”