Concursul "Congruente", problema 2
Posted: Sun Nov 09, 2008 11:29 pm
a) Aratati ca oricare ar fi \( x,y,z \in \mathbb{R} \) au loc inegalitatile:
I)\( x^2+y^2+z^2 \geq xy+yz+zx \)
II)\( x^4+y^4+z^4\geq xyz(x+y+z) \).
b) Daca \( x,y,z>0 \) si \( x+y+z=1 \), atunci: \( \frac{x+y+1}{x^4+y^4+1}+\frac{y+z+1}{y^4+z^4+1}+\frac{z+x+1}{z^4+x^4+1} \leq \frac{1}{xyz}. \)
Marius Damian, Braila
I)\( x^2+y^2+z^2 \geq xy+yz+zx \)
II)\( x^4+y^4+z^4\geq xyz(x+y+z) \).
b) Daca \( x,y,z>0 \) si \( x+y+z=1 \), atunci: \( \frac{x+y+1}{x^4+y^4+1}+\frac{y+z+1}{y^4+z^4+1}+\frac{z+x+1}{z^4+x^4+1} \leq \frac{1}{xyz}. \)
Marius Damian, Braila