Concursul "Congruente", problema 2

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Concursul "Congruente", problema 2

Post by Claudiu Mindrila »

a) Aratati ca oricare ar fi \( x,y,z \in \mathbb{R} \) au loc inegalitatile:
I)\( x^2+y^2+z^2 \geq xy+yz+zx \)
II)\( x^4+y^4+z^4\geq xyz(x+y+z) \).
b) Daca \( x,y,z>0 \) si \( x+y+z=1 \), atunci: \( \frac{x+y+1}{x^4+y^4+1}+\frac{y+z+1}{y^4+z^4+1}+\frac{z+x+1}{z^4+x^4+1} \leq \frac{1}{xyz}. \)
Marius Damian, Braila
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

a) cunoscuta.

b) Aplicam a) de doua ori :


\( x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyyz+yzzx+zxxy=xyz(x+y+z) \)

c) Aplicam b) si ipoteza x+y+z=1 :

\( \frac{x+y+1}{x^4+y^4+1}+\frac{y+z+1}{y^4+z^4+1}+\frac{z+x+1}{z^4+x^4+1}\le \frac{z+y+1}{xy1(x+y+1)}+\frac{y+z+1}{yz1(y+z+1)}+\frac{z+x+1}{zx1(z+x+1)}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{z+x+y}{xyz}=\frac{1}{xyz} \)
Post Reply

Return to “Clasa a VIII-a”