Numarul a

Moderators: Bogdan Posa, Laurian Filip

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Numarul a

Post by alex2008 »

Aflati numarul a pentru care \( x=\frac{119^{a+1}}{49^a}\cdot\frac{85^{a+2}}{289^{a+1}} \) este numar natural .
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

\( x=\frac{119^a\cdot 119 \cdot 85^a \cdot 85^2}{49^a \cdot 289^a \cdot 289} \)\( =\frac{(7 \cdot 17 \cdot 5 \cdot 17)^a \cdot 7 \cdot 17 \cdot 5^2 \cdot 17^2}{(7 \cdot 7 \cdot 17 \cdot 17)^a \cdot 17 \cdot 17} \)\( =\frac{5^a \cdot 5^2 \cdot 7 \cdot 17}{7^a} \)\( =\frac{5^a \cdot 5^2 \cdot 17}{7^a^-^1} \).
Deoarece \( (5^a \cdot 5^2 \cdot 17; 7)=1 \), x va fi numar natural \( \Leftrightarrow \) \( 7^a^-^1=1 \Rightarrow \) a-1=0; a=1.
Post Reply

Return to “Clasa a VI-a”