O inegalitate draguta

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

O inegalitate draguta

Post by Claudiu Mindrila »

Aratati ca \( 1<\frac{x}{x+z+t}+\frac{y}{x+y+t}+\frac{z}{x+y+z}+\frac{t}{x+y+t}<2, \forall x,y,z,t \in \mathbb{R}^*_+ \).
Marin Dolteanu, Concursul "Cristian S. Calude", 2001
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Pentru prima:

\( \frac{x}{x+z+t}>\frac{x}{x+y+z+t} \) si analoagele

Prin sumare se obtine apoi inegalitatea din stanga

Pentru a doua:

\( \frac{x}{x+z+t}<\frac{x+y}{x+y+z+t} \)

\( \frac{y}{x+y+t}<\frac{y+z}{x+y+z+t} \)

\( \frac{z}{x+y+z}<\frac{z+t}{x+y+z+t} \)

\( \frac{t}{y+z+t}<\frac{t+x}{x+y+z+t} \) si apoi prn adunare rezulta a doua inegalitate.
Post Reply

Return to “Clasa a VII-a”