Fie \( (l_{n})_{n\geq 1} \) sirul numerelor libere de patrate. Sa se arate ca
\( \limsup_{n\to\infty}(l_{n+1}-l_{n})=\infty. \)
Diferenta dintre numere libere de patrate consecutive
Moderator: Filip Chindea
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Diferenta dintre numere libere de patrate consecutive
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
Fie \( p_1,p_2,...,p_k,.. \) sirul numerelor prime
Conform teoremei chineze a resturilor exista \( n \) astfel incat:
\( n\equiv -i (mod p_i^2) \) \( i=1,2,...,m \)
Avem atunci \( n, n+1,...,n+m \) nu sunt libere de patrate.
Asta demonstreaza ca exista oricat de multe numere consecutive care nu sunt libere de patrate, de unde rezulta concluzia problemei.
Conform teoremei chineze a resturilor exista \( n \) astfel incat:
\( n\equiv -i (mod p_i^2) \) \( i=1,2,...,m \)
Avem atunci \( n, n+1,...,n+m \) nu sunt libere de patrate.
Asta demonstreaza ca exista oricat de multe numere consecutive care nu sunt libere de patrate, de unde rezulta concluzia problemei.