Shortlist ONM 2006

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Shortlist ONM 2006

Post by Marius Dragoi »

Se dau numerele \( a_1 , a_2 , ... , a_n \in \{ 1 , -1\} \) astfel incat \( \sum_{i=1}^{n} {a_k} = 0 \). Aratati ca exista \( k \in {1 , 2 , ... , n} \) astfel incat \( \| \sum_{i=1}^{k} {i a_i} \| \leq \[\frac {k}{2}\] \).

Shortlist ONM 2006, G. Rene, Bucuresti
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

i este de la partea imaginara sau suma este \( 1\cdot a_1+2\cdot a_2+...+k\cdot a_k \)??
Post Reply

Return to “Clasa a X-a”