Problema 4, TST OBMJ 2005

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Problema 4, TST OBMJ 2005

Post by Claudiu Mindrila »

Fie \( a,b,c \) numere reale strict pozitive astfel incat \( a+b+c=3 \). Aratati ca \( (3-2a)(3-2b)(3-2c)\leq a^2b^2c^2 \).
Robert Szasz, TST OBMJ,2005
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

1)\( 3-2a\leq0,3-2b\geq0,3-2c\geq0 \Rightarrow \Pi(3-2a)\leq0<a^2b^2c^2 \)
2)\( 3-2a\leq0,3-2b\leq0,3-2c\geq0\Rightarrow a+b\geq3\Rightarrow c=0 \) contradictie.
3)\( 3-2a\geq0,3-2b\geq0,3-2c\geq0 \)
Notez \( a=x+y,b=y+z,c=z+x, x,y,z\in\[0,\frac{3}{2}\],x+y+z=\frac{3}{2} \) si inegalitatea devine: \( 8xyz\leq(\Pi(x+y))^2\Leftrightarrow 8xyz\leq(\Pi(\frac{3}{2}-x))^2\Leftrightarrow 8xyz\leq(\frac{3\sum xy-2xyz}{2})^2 \).
Notez \( q=xy+yz+zx \) si \( p=xyz \).
Din inegalitati consacrate stim ca \( (\sum x)^2\geq3q\Rightarrow q\leq\frac{3}{4} \) si \( q^2\geq3p(\sum x) \)
\( \Rightarrow q^2\geq\frac{9p}{2} \Rightarrow \frac{3q}{4}\geq q^2\geq \frac{9p}{2}\\\Rightarrow p\leq\frac{q}{6}\Rightarrow (\frac{3}{2}q-p)^2\geq(\frac{3}{2}-\frac{1}{6})^2q^2=\frac{16}{9}q^2\geq\frac{16}{9}\cdot\frac{9}{2}p=8p \)
Egalitate cand \( x=y=z=\frac{1}{2}\Rightarrow a=b=c=1 \).
n-ar fi rau sa fie bine :)
Post Reply

Return to “Inegalitati”