Ecuatie in numere intregi
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Sabin Salajan
- Euclid
- Posts: 29
- Joined: Tue Apr 22, 2008 11:12 am
- Location: Satu Mare
Ecuatie in numere intregi
Rezolvati in \( Z \) ecuatia : \( x^2(y-1)+y^2(x-1)=1 \)
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
\( x^2(y-1)+y^2(x-1)=1\Rightarrow x^2y+y^2x=1+x^2+y^2 \Rightarrow xy(x+y+2)=1+(x+y)^2 \). Daca notam \( x+y=a \) atunci din ultima relatie rezulta ca \( a+2|1+a^2\Rightarrow a+2|2a-1 \Rightarrow a+2|5 \Rightarrow a \in \{-7,-3,-1,3\} \).
1) \( x+y=-7 \Rightarrow xy(-5)=50 \Rightarrow xy=-10 \) si solutiile nu sunt intregi.
2) \( x+y=-3\Rightarrow xy(-1)=10 \Rightarrow xy=-10 \) de unde rezulta solutiile \( (-5,2),(2,-5) \)
3) \( x+y=-1\Rightarrow xy=2 \) fara radacini intregi
4) \( x+y=3 \Rightarrow xy=2 \) de unde rezulta si solutiile \( (1,2),(2,1) \).
Deci avem 4 perechi de intregi care verifica relatia.
1) \( x+y=-7 \Rightarrow xy(-5)=50 \Rightarrow xy=-10 \) si solutiile nu sunt intregi.
2) \( x+y=-3\Rightarrow xy(-1)=10 \Rightarrow xy=-10 \) de unde rezulta solutiile \( (-5,2),(2,-5) \)
3) \( x+y=-1\Rightarrow xy=2 \) fara radacini intregi
4) \( x+y=3 \Rightarrow xy=2 \) de unde rezulta si solutiile \( (1,2),(2,1) \).
Deci avem 4 perechi de intregi care verifica relatia.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog