IMC 2008, ziua 1, problema 2

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

IMC 2008, ziua 1, problema 2

Post by Beniamin Bogosel »

Fie \( V \) spatiul vectorial real al polinoamelor cu coeficienti reali intr-o singura variabila. Fie \( P:V \to \mathbb{R} \) o aplicatie liniara astfel incat pentru orice \( f,g \in V \) cu \( P(fg)=0 \) sa avem \( P(f)=0 \) sau \( P(g)=0 \).
Demonstrati ca exista numerele reale \( x_0,\ c \) astfel incat \( P(f)=cf(x_0) \) pentru orice \( f \in V. \)

IMC 2008
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Algebra liniara”