Iata o problema care ma intriga asa putin. Enuntul ei este urmatorul:
Fie sirul \( (x_{n})_{n\geq 1} \) definit prin \( x_{n}=\sum_{k=1}^{n}\frac{1}{2^{k}-k} \) Sa se arate ca sirul este convergent catre \( L \) si partea intreaga a lui \( L \) este \( 1 \). (L. Panaitopol)
P.S. Ceea ce ma intriga pe mine este cat e de fapt \( L \)-ul ala.
Un sir care ma intriga
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Un sir care ma intriga
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua