Inegalitate de la ONM 2002

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate de la ONM 2002

Post by Claudiu Mindrila »

Fie \( a,b,c \) numere reale strict pozitive, astfel incat \( ab+bc+ca=1 \). Sa se demonstreze ca: \( \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \geq \sqrt{3}+\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}. \)

Dinu Teodorescu, ONM 2002
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
mumble
Euclid
Posts: 48
Joined: Wed Jan 30, 2008 10:25 pm

Post by mumble »

Folosind conditia \( ab+bc+ca=1 \) rescriem inegalitatea ca \( \sum \frac{ab+bc+ca}{a+b}\geq \sqrt{3}+\sum \frac{ab}{a+b}\Leftrightarrow\sum\frac{c(a+b)}{a+b}\geq\sqrt{3}\Leftrightarrow a+b+c\geq\sqrt{3}, \) inegalitate care rezulta imediat din \( (a+b+c)^2\geq3\sum ab=3. \)
Post Reply

Return to “Clasa a IX-a”