JBMO 2008 problema 1

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
Omer Cerrahoglu
Euclid
Posts: 34
Joined: Mon Mar 17, 2008 1:08 pm

JBMO 2008 problema 1

Post by Omer Cerrahoglu »

Determinati numerele reale \( a \), \( b \), \( c \), \( d \) astfel incat \( a+b+c+d=20 \) si \( ab+ac+ad+bc+bd+cd=150 \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( (a+b+c+d)^2=a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd \)

Deci \( \sum_{cyc} {a^2}=400-2\cdot150=100 \)

Insa \( (a-b)^2+(a-c)^2+(a-d)^2+(b-c)^2+(b-d)^2+(c-d)^2=3\sum {a^2}-2(ab+ac+ad+bc+bd+cd)=300-300=0 \)

Asadar \( a=b=c=d=5 \)
Post Reply

Return to “Algebra”