Ineg. geometrica "in premiera".

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Ineg. geometrica "in premiera".

Post by Virgil Nicula »

Sa se arate ca intr-un triunghi oarecare exista inegalitatea \( \underline {\overline {\left\|\ \frac {a}{r_a}+\frac {b}{r_b}+\frac {c}{r_c}\ge \frac {2p}{2R - r}\ \right\|}} \) .
Last edited by Virgil Nicula on Mon Jul 14, 2008 2:55 am, edited 2 times in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se stie ca \( \sum {ar_a}=2p(2R-r) \)

Aplicand CBS \( \sum {\frac{a}{r_a}=\sum {\frac {a^2}{ar_a}}\geq\frac{(a+b+c)^2}{ar_a+br_b+cr_c}=\frac{2p}{2R-r} \)
Post Reply

Return to “Clasa a IX-a”