In legatura cu problema 2, TST 2/2008 iata alte doua probleme propuse de Bogdan Enescu.
1. Daca \( x_1, x_2, ..., x_n \in \mathbb{R} \), atunci
\( \frac{x_1}{1+x_1^2}+\frac{x_2}{1+x_1^2+x_2^2}+...+\frac{x_n}{1+x_1^2+x_2^2+...+x_n^2}<\sqrt{n} \)
2. Daca \( x_1, x_2, ..., x_n \) sunt numere pozitive, atunci
\( \frac{1}{1+x_1}+\frac{1}{1+x_1+x_2}+...+\frac{1}{1+x_1+x_2+...+x_n}<\sqrt{\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}} \)
ONM 2005
Aplicatii ale CBS
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Prima inegalitate este din lista scurta IMO, 2001. A se vedea urmatorul link.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
Aceeasi prima inegalitate a fost data la locala in Arges in 2007 
Si asta e ciudat ca o problema de nivel OIM este propusa la o locala de matematica.
Si asta e ciudat ca o problema de nivel OIM este propusa la o locala de matematica.
Last edited by Laurentiu Tucaa on Sat Nov 21, 2009 11:26 pm, edited 1 time in total.
Asa e. A fost propunerea Romaniei si foarte aproape de a fi aleasa in concurs. O interventie a liderului din Kazahstan (care a spus ca i se pare ca a mai vazut ceva similar, dar nu stie unde...) a facut ca problema sa fie eliminata. La votul initial, a fost cea mai apreciata problema.Claudiu Mindrila wrote:Prima inegalitate este din lista scurta IMO, 2001. A se vedea urmatorul link.
Bogdan Enescu
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Aceeasi problema (problema 1) a aparut si in American Mathematical Monthly in 2009 propusa de un chinez.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
Folosim inegalitatea CBS
\( \sum{a_k}\le\sqrt{n}\sqrt{\sum a_k^2} \) cu \( a_k=\frac{x_k}{1+\sum_{i=1}^k x_i^2} \)
Astfel tot ce ramane de demonstrat este
\( \sum{(\frac{x_k}{1+x_1^2+x_2^2+...x_k^2})^2<1 \)
Dar \( (\frac{x_k}{1+x_1^2+x_2^2+...x_k^2})^2\le\frac{x_k^2}{(1+x_1^2+...+x_{k-1}^2)(1+x_1^2+...+x_k^2)}=\frac{1}{1+x_1^2+...+x_{k-1}^2}-\frac{1}{1+x_1^2+...+x_k^2} \)
\( \Longrightarrow \sum{(\frac{x_k}{1+x_1^2+x_2^2+...x_k^2})^2\le 1-\frac{1}{1+x_1^2+...+x_n^2}<1 \)
\( \sum{a_k}\le\sqrt{n}\sqrt{\sum a_k^2} \) cu \( a_k=\frac{x_k}{1+\sum_{i=1}^k x_i^2} \)
Astfel tot ce ramane de demonstrat este
\( \sum{(\frac{x_k}{1+x_1^2+x_2^2+...x_k^2})^2<1 \)
Dar \( (\frac{x_k}{1+x_1^2+x_2^2+...x_k^2})^2\le\frac{x_k^2}{(1+x_1^2+...+x_{k-1}^2)(1+x_1^2+...+x_k^2)}=\frac{1}{1+x_1^2+...+x_{k-1}^2}-\frac{1}{1+x_1^2+...+x_k^2} \)
\( \Longrightarrow \sum{(\frac{x_k}{1+x_1^2+x_2^2+...x_k^2})^2\le 1-\frac{1}{1+x_1^2+...+x_n^2}<1 \)