Page 1 of 1
Tot o inegalitate
Posted: Mon Jul 07, 2008 4:35 pm
by Claudiu Mindrila
Demonstrati ca pentru orice numere reale \( a,b,c \in(0, \infty) \) avem \( \frac{a^3}{b(b+c)}+\frac{b^3}{c(c+a)}+\frac{c^3}{a(a+b)} \geq \frac{a+b+c}{2} \).
Costel Anghel, Revista Minus 1/2008
Posted: Mon Jul 07, 2008 8:55 pm
by Marius Dragoi
Se aplica Cauchy si gata.

Posted: Mon Jul 07, 2008 10:05 pm
by Marius Mainea
Sa vedem si noi cum se aplica CBS, domnu' Marius.
Posted: Tue Jul 08, 2008 7:11 am
by Claudiu Mindrila
Aceasta este si intrebarea mea

pentru
Marius Dragoi.
Posted: Tue Jul 08, 2008 10:27 am
by Radu Titiu
\( \sum \frac{a^3}{b(b+c)}=\sum \frac{a^4}{ab(b+c)} \geq \frac{\left( \sum a^2 \right)^2}{\sum ab^2+\sum abc} \geq \frac{a+b+c}{2} \)
ultima fiind echivalenta cu
\( 2\sum a^4+3 \sum a^2b^2 \geq \sum abc^2+\sum a^3c+3 \sum a^2bc \)
care este adevarata deoarece
\( 3 \sum a^2b^2 \geq 3 \sum a^2bc \) si \( 2\sum a^4 \geq \sum abc^2+\sum a^3c \).
Posted: Tue Jul 08, 2008 10:44 am
by Claudiu Mindrila
Frumoasa solutie, Radu Titiu

Posted: Tue Jul 08, 2008 12:54 pm
by Marius Mainea
Solutia 2
Tripletele \( (\frac{a^3}{b+c},\frac{b^3}{c+a},\frac{c^3}{a+b}) \) si \( (a,b,c) \) sunt invers orientate si atunci
\( \sum {\frac{a^3}{b(b+c)}}\geq\sum{\frac{a^3}{a(b+c)}}=\sum {\frac{a^2}{b+c}\geq\frac{a+b+c}{2} \) conform CBS.