Fie tringhiul ABC si G centrul sau de greutate astfel incat:
a+AG=b+BG=c+CG.
Demonstrati ca triunghiul ABC este echilateral.
Marius Mainea (Concursul revistei Arhimede, noiembrie/2006)
Caracterizare a triunghiului echilateral
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Tudor Micu
- Pitagora
- Posts: 51
- Joined: Thu Mar 06, 2008 9:39 pm
- Location: Cluj-Napoca, Romania
\( GA^2=\frac{4}{9}\frac{2(b^2+c^2)-a^2}{4}=\frac{2b^2+2c^2-a^2}{9} \)
\( GB^2=\frac{4}{9}\frac{2(c^2+a^2)-b^2}{4}=\frac{2c^2+2a^2-b^2}{9} \)
\( GC^2=\frac{4}{9}\frac{2(a^2+b^2)-c^2}{4}=\frac{2a^2+2b^2-c^2}{9} \)
Avem deci \( a+\frac{\sqrt{2b^2+2c^2-a^2}}{3}=b+\frac{\sqrt{2c^2+2a^2-b^2}}{3}=c+\frac{\sqrt{2a^2+2b^2-c^2}}{3} \)
\( \sqrt{2c^2+2a^2-b^2}=3(a-b)+\sqrt{2b^2+2c^2-a^2} \)
\( 2c^2+2a^2-b^2=9(a-b)^2+2b^2+2c^2-a^2+6(a-b)\sqrt{2b^2+2c^2-a^2} \)
\( 3(a-b)(a+b)=9(a-b)^2+6(a-b)\sqrt{2b^2+2c^2-a^2} \)(1)
\( \sqrt{2c^2+2a^2-b^2}=3(c-b)+\sqrt{2a^2+2b^2-c^2} \)
\( 2c^2+2a^2-b^2=9(c-b)^2+2a^2+2b^2-c^2+6(c-b)\sqrt{2a^2+2b^2-c^2} \)
\( 3(c-b)(c+b)=9(c-b)^2+6(c-b)\sqrt{2a^2+2b^2-c^2} \)(2)
Daca \( a=b \) atunci din (2): \( (c-b)[9c-9b-3c-3b+6\sqrt{4b^2-c^2}]=0 \)
Daca \( b=c \) avem ca triunghiul ABC este echilateral.
Daca nu, rezulta \( c-2b+\sqrt{4b^2-c^2}=0 \), deci \( 4b^2-c^2=(2b-c)^2 \), deci \( 2c^2-4bc=0 \), de unde \( c=2b \), rezulta GC=0, deci triunghiul ABC este degenerat
Daca \( a\neq b \) rezulta \( 3a-3b+2\sqrt{2b^2+2c^2-a^2}-a-b=0 \), deci \( 2b^2+2c^2-a^2=(2b-a)^2 \), de unde rezulta \( (b-a)^2=c^2 \). Rezulta deci ca \( b=a+c \) sau \( a=b+c \), deci triunghiul ABC este degenerat
\( GB^2=\frac{4}{9}\frac{2(c^2+a^2)-b^2}{4}=\frac{2c^2+2a^2-b^2}{9} \)
\( GC^2=\frac{4}{9}\frac{2(a^2+b^2)-c^2}{4}=\frac{2a^2+2b^2-c^2}{9} \)
Avem deci \( a+\frac{\sqrt{2b^2+2c^2-a^2}}{3}=b+\frac{\sqrt{2c^2+2a^2-b^2}}{3}=c+\frac{\sqrt{2a^2+2b^2-c^2}}{3} \)
\( \sqrt{2c^2+2a^2-b^2}=3(a-b)+\sqrt{2b^2+2c^2-a^2} \)
\( 2c^2+2a^2-b^2=9(a-b)^2+2b^2+2c^2-a^2+6(a-b)\sqrt{2b^2+2c^2-a^2} \)
\( 3(a-b)(a+b)=9(a-b)^2+6(a-b)\sqrt{2b^2+2c^2-a^2} \)(1)
\( \sqrt{2c^2+2a^2-b^2}=3(c-b)+\sqrt{2a^2+2b^2-c^2} \)
\( 2c^2+2a^2-b^2=9(c-b)^2+2a^2+2b^2-c^2+6(c-b)\sqrt{2a^2+2b^2-c^2} \)
\( 3(c-b)(c+b)=9(c-b)^2+6(c-b)\sqrt{2a^2+2b^2-c^2} \)(2)
Daca \( a=b \) atunci din (2): \( (c-b)[9c-9b-3c-3b+6\sqrt{4b^2-c^2}]=0 \)
Daca \( b=c \) avem ca triunghiul ABC este echilateral.
Daca nu, rezulta \( c-2b+\sqrt{4b^2-c^2}=0 \), deci \( 4b^2-c^2=(2b-c)^2 \), deci \( 2c^2-4bc=0 \), de unde \( c=2b \), rezulta GC=0, deci triunghiul ABC este degenerat
Daca \( a\neq b \) rezulta \( 3a-3b+2\sqrt{2b^2+2c^2-a^2}-a-b=0 \), deci \( 2b^2+2c^2-a^2=(2b-a)^2 \), de unde rezulta \( (b-a)^2=c^2 \). Rezulta deci ca \( b=a+c \) sau \( a=b+c \), deci triunghiul ABC este degenerat
Tudor Adrian Micu
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica