Page 1 of 1
Shortlist ONM 2003
Posted: Mon May 26, 2008 10:22 am
by Claudiu Mindrila
Demonstrati inegalitatea \( \frac{(a+b)^3}{c}+\frac{(b+c)^3}{a}+\frac{(c+a)^3}{b} \geq 8(a^2+b^2+c^2). \)
Nicolae Papacu, lista scurta, 2003
Posted: Mon May 26, 2008 12:31 pm
by Beniamin Bogosel
O solutie ar fi urmatoarea:
\( \sum \frac{(a+b)^3}{c}=\sum \frac{a^3}{c}+\sum \frac{b^3}{c}+3\sum \frac{a^2b}{c}+3\sum \frac{ab^2}{c} \).
Acum din inegalitatea lui Cebasev a rearanjamentelor rezulta
\( \sum \frac{a^3}{c}\geq\sum a^2 \) si
\( \sum \frac{b^3}{c}\geq\sum a^2 \).
Inegalitatea
\( \sum \frac{a^2b}{c}+\sum \frac{ab^2}{c}\geq 2\sum a^2 \) e echivalenta cu
\( \sum_{sym} a^3b^2\geq \sum_{sym} a^3bc \), care este adevarata conform inegalitatii lui Muirhead pentru tripletele
\( (3,2,0) \geq (3,1,1) \).
Insumand acestea obtinem inegalitatea dorita.
Pentru inegalitatea lui Muirhead incercati cu google (nu am putut sa pun link...).
Posted: Mon May 26, 2008 10:09 pm
by Marius Mainea
marius mainea
Tripletele (
\( \frac{(a+b)^2}{c^2}, \)\( \frac{(b+c)^2}{a^2}, \)\( \frac{(c+a)^2}{b^2}) \) si
\( (a+b,b+c,c+a) \) sunt la fel orientate, deci putem aplica inegalitatea Cebasev.
Apoi cu CBS si medii rezulta inegalitatea dorita.
Posted: Tue Mar 30, 2010 9:45 pm
by salazar
O alta abordare:
\( \sum \frac{(a+b)^3}{c}=\sum \frac{(a+b)^4}{ac+bc}\ge(C.B.S)\frac{[(a+b)^2+(b+c)^2+(c+a)^2]^2}{2(ab+bc+ca)}\ge 8(a^2+b^2+c^2)\Longleftrightarrow (\sum a^2+\sum ab)^2\ge 4(\sum a^2)(\sum ab) \)
Notand \( \sum a^2=x \) si \( \sum ab=y \) ramane de demonstrat ca \( (x+y)^2\ge 4xy\Longleftrightarrow (x-y)^2\ge0 q.e.d \)
Edit: eu am gasit aceasta inegalitate propusa pentru clasa a VIII-a in 2003, cu a,b,c strict pozitive.